p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.90C25, C23.134C24, C42.578C23, C24.507C23, C4.792+ 1+4, D4⋊8(C2×Q8), (C2×D4)⋊23Q8, (D4×Q8)⋊19C2, C23⋊2(C2×Q8), D4○2(C22⋊Q8), C4⋊Q8⋊92C22, D4⋊3Q8⋊20C2, (C2×C4).80C24, (C4×Q8)⋊44C22, C23⋊2Q8⋊6C2, C2.15(Q8×C23), C4.53(C22×Q8), C4⋊C4.296C23, C22⋊Q8⋊33C22, (C2×D4).505C23, (C4×D4).232C22, (C2×Q8).287C23, C42.C2⋊15C22, (C22×Q8)⋊33C22, C22.11(C22×Q8), C22⋊C4.100C23, (C22×C4).362C23, (C23×C4).611C22, (C2×C42).944C22, C2.33(C2×2+ 1+4), C2.25(C2.C25), C22.11C24.10C2, (C22×D4).599C22, C23.37C23⋊35C2, C42⋊C2.225C22, C23.41C23⋊15C2, (C2×C4)⋊3(C2×Q8), (C2×C4×D4).90C2, (C2×D4)○(C22⋊Q8), (C2×C4⋊C4)⋊74C22, (C2×C22⋊Q8)⋊77C2, (C2×C22⋊C4).382C22, SmallGroup(128,2233)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.90C25
G = < a,b,c,d,e,f,g | a2=b2=d2=f2=g2=1, c2=e2=b, ab=ba, dcd=gcg=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 788 in 550 conjugacy classes, 430 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C23×C4, C22×D4, C22×Q8, C2×C4×D4, C22.11C24, C2×C22⋊Q8, C23.37C23, C23⋊2Q8, C23.41C23, D4×Q8, D4⋊3Q8, C22.90C25
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8, 2+ 1+4, C25, Q8×C23, C2×2+ 1+4, C2.C25, C22.90C25
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 23)(2 32)(3 21)(4 30)(5 14)(6 11)(7 16)(8 9)(10 20)(12 18)(13 19)(15 17)(22 26)(24 28)(25 29)(27 31)
(1 9 3 11)(2 12 4 10)(5 24 7 22)(6 23 8 21)(13 25 15 27)(14 28 16 26)(17 31 19 29)(18 30 20 32)
(5 20)(6 17)(7 18)(8 19)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 26)(4 28)(5 18)(6 8)(7 20)(9 11)(10 16)(12 14)(13 15)(17 19)(21 23)(22 32)(24 30)(25 27)(29 31)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23)(2,32)(3,21)(4,30)(5,14)(6,11)(7,16)(8,9)(10,20)(12,18)(13,19)(15,17)(22,26)(24,28)(25,29)(27,31), (1,9,3,11)(2,12,4,10)(5,24,7,22)(6,23,8,21)(13,25,15,27)(14,28,16,26)(17,31,19,29)(18,30,20,32), (5,20)(6,17)(7,18)(8,19)(21,29)(22,30)(23,31)(24,32), (1,3)(2,26)(4,28)(5,18)(6,8)(7,20)(9,11)(10,16)(12,14)(13,15)(17,19)(21,23)(22,32)(24,30)(25,27)(29,31)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23)(2,32)(3,21)(4,30)(5,14)(6,11)(7,16)(8,9)(10,20)(12,18)(13,19)(15,17)(22,26)(24,28)(25,29)(27,31), (1,9,3,11)(2,12,4,10)(5,24,7,22)(6,23,8,21)(13,25,15,27)(14,28,16,26)(17,31,19,29)(18,30,20,32), (5,20)(6,17)(7,18)(8,19)(21,29)(22,30)(23,31)(24,32), (1,3)(2,26)(4,28)(5,18)(6,8)(7,20)(9,11)(10,16)(12,14)(13,15)(17,19)(21,23)(22,32)(24,30)(25,27)(29,31) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,23),(2,32),(3,21),(4,30),(5,14),(6,11),(7,16),(8,9),(10,20),(12,18),(13,19),(15,17),(22,26),(24,28),(25,29),(27,31)], [(1,9,3,11),(2,12,4,10),(5,24,7,22),(6,23,8,21),(13,25,15,27),(14,28,16,26),(17,31,19,29),(18,30,20,32)], [(5,20),(6,17),(7,18),(8,19),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,26),(4,28),(5,18),(6,8),(7,20),(9,11),(10,16),(12,14),(13,15),(17,19),(21,23),(22,32),(24,30),(25,27),(29,31)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 4A | ··· | 4H | 4I | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | 2+ 1+4 | C2.C25 |
kernel | C22.90C25 | C2×C4×D4 | C22.11C24 | C2×C22⋊Q8 | C23.37C23 | C23⋊2Q8 | C23.41C23 | D4×Q8 | D4⋊3Q8 | C2×D4 | C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 2 | 4 | 12 | 8 | 2 | 2 |
Matrix representation of C22.90C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C22.90C25 in GAP, Magma, Sage, TeX
C_2^2._{90}C_2^5
% in TeX
G:=Group("C2^2.90C2^5");
// GroupNames label
G:=SmallGroup(128,2233);
// by ID
G=gap.SmallGroup(128,2233);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,1430,352,570,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=f^2=g^2=1,c^2=e^2=b,a*b=b*a,d*c*d=g*c*g=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations